§ 32 Die In-Funktion und ihre Ableitung

Die Exponentialfunktion $f: x \mapsto e^x$; $ID_f = IR$ ist streng monoton zunehmend. Ihre Umkehrfunktion ist die Logarithmusfunktion zur Basis e.

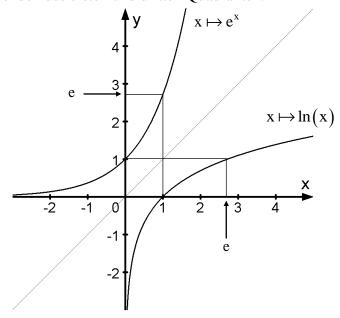
32.1 Die In-Funktion

Die Umkehrfunktion der Exponentialfunktion $x \mapsto e^x$; ${\rm I\!D} = {\rm I\!R}$, ist die natürliche Logarithmusfunktion

$$x \mapsto \ln(x)$$
; $\mathbb{ID} = \mathbb{IR}^+$

Sie wird auch kurz als In-Funktion bezeichnet.

Den Graphen der In-Funktion erhält man aus dem Graphen der e-Funktion durch Spiegelung an der Winkelhalbierenden des ersten und dritten Quadranten.



32.2 Definitionsmenge der In-Funktion

Bei der Bestimmung der Definitionsmenge der In-Funktion ist zu beachten, dass das Argument des Logarithmus immer größer als Null ist (Ähnlich wie unter der Wurzel!).

Aufgaben:

1. Bestimmen Sie die maximale Definitionsmenge der Funktion f

a)
$$f(x) = \ln(x+2)$$

b) $f(x) = \ln(x^2-1)$

c)
$$f(x) = ln(\frac{1}{4}x^2 + x + 1)$$

d)
$$f(x) = \ln(-\frac{1}{4}x^2 + 4)$$

e)
$$f(x) = \ln(x+2) + \ln(5-x)$$

f)
$$f(x) = \ln(x) - \ln(x^2 - 4)$$

g)
$$f(x) = ln\left(\frac{x+3}{x^2+2}\right)$$

h)
$$f(x) = ln\left(\frac{x}{x^2 - 4}\right)$$

i)
$$f(x) = \ln\left(\frac{x+1}{-\frac{1}{2}x^2+2}\right)$$

$$j) \quad f(x) = \frac{2-x}{\ln(1+x)}$$

k)
$$f(x) = \frac{\ln(x^2 - 1)}{1 - \ln(x)}$$

1)
$$f(x) = \frac{\ln(1-x)}{\ln(x)(1-\ln(x))}$$

2. Bestimmen Sie in Abhängigkeit von $a \in \mathbb{R}$ die maximale Definitionsmenge der Funktion f.

a)
$$f(x) = \ln(ax - x^2)$$

b)
$$f(x) = ln(x^2 - a)$$

32.3 Einige wichtige Beziehungen

Zum Arbeiten mit der In-Funktion sind folgende Beziehungen sehr hilfreich.

$$\begin{split} &\ln\left(1\right) = 0 \\ &\ln\left(e\right) = 1 \\ &\ln\left(e^x\right) = x \\ &e^{\ln\left(x\right)} = x \\ &\ln\left(u \cdot v\right) = \ln\left(u\right) + \ln\left(v\right) \\ &u, v \in {\rm I\!R}^+ \\ &\ln\left(\frac{u}{v}\right) = \ln\left(u\right) - \ln\left(v\right) \\ &u, v \in {\rm I\!R}^+ \\ &\ln\left(u^r\right) = r \cdot \ln\left(u\right) \\ &u \in {\rm I\!R}^+, r \in {\rm I\!R}^+ \end{split}$$

Aufgaben:

3. Berechnen Sie ohne Taschenrechner

$$\ln(e) = \ln(e^{2}) = \ln(e^{-2}) = \ln(\frac{1}{e}) = \ln(\sqrt{e}) = \ln(\frac{1}{e^{3}}) = \ln($$

4. Vereinfachen Sie.

$$e^{\ln(3)} =$$
 $e^{-\ln(5)} =$
 $e^{0.5 \cdot \ln(25)} =$
 $e^{\ln(e)} =$
 $e^{\ln(2)-1} =$

5. Vereinfachen Sie

$$\ln(3) + 3 \cdot \ln(2) =$$

$$\frac{1}{2} \cdot \ln(9) - \ln(\frac{1}{2}) =$$

$$\ln(3x) - \ln(x) =$$

$$\ln(\frac{x}{2}) - \ln(\sqrt{x}) =$$

$$2 \cdot \ln\left(\frac{1}{x}\right) + \ln\left(x^2\right) =$$

- 6. Drücken Sie durch einen einzigen Logarithmusterm aus.
- a) $\ln(x) + \ln(x+1)$
- b) $\ln(x)-\ln(x+1)$
- c) $3 \cdot \ln(x) + 2 \cdot \ln(x+1)$
- d) $2 \cdot \ln(x) \frac{1}{2} \cdot \ln(x^2 + 1)$
- e) $-3 \cdot \ln(x) 2 \cdot \ln(x+1)$
- f) $\ln \frac{x}{x+2} + \ln \frac{x+2}{x+3} + \ln \frac{x+3}{x+1}$

32.4 Lösen von Gleichungen

Das Lösen von Exponential- und Logarithmusgleichungen haben wir ja schon gelernt. Nun aber noch einige spezielle Übungen zum warm werden für später!

- 7. Bestimmen Sie die Lösungen der folgenden Gleichungen
- a) $\ln(x) = 3$

f) $x \cdot e^x = 0$

b) $\ln(x) = -\frac{1}{5}$

g) $x^2 \cdot e^x = 0$

c) $2 \cdot \ln(x) = -2$

h) $\ln(x) \cdot e^x = 0$

d) $\ln(x^2) = 2$

i) $x \cdot \ln(x) = 0$

- e) $e^{x} = 3$
- 8. Lösen Sie die Exponentialgleichungen
- a) $e^x = e^{1-2x}$

b) $e^{x-1} = \frac{1}{2}$

g) $\frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{1}{2}$

c) $2 \cdot e^{-x} = e^{x+1}$

d) $x \cdot e^x = 3x$

h) $e^{(-x^2)} = e^{5x}$

- e) $(1-e^x)^2 = 1+e^x$
- 9. Bestimmen Sie die Definitionsmenge und lösen Sie die Logarithmusgleichungen.
- a) $\ln(3x-1) = \ln(2x)$

f) $\ln(x^2) - \ln(2x-1) = 1$

b) $\ln(2x) = -1$

g) $(\ln(x))^2 = \ln(x) + 2$

c) $\ln(x^2-2)=0$

h) $\ln(x^2) = -1$

d) $\ln(2e-x^2)=1$

i) $\ln(x+5)-\ln(x-1) = \ln(2x+4)-\ln(x)$

e) $x^2 \cdot \ln(x) = 4 \cdot \ln(x)$

32.5 Die Ableitung der In-Funktion

Es gilt folgende Beziehung:

$$e^{\ln(x)} = x$$

Bildet man nun auf beiden Seiten der Gleichung die Ableitung, so folgt (Kettenregel!):

$$\left(e^{\ln(x)}\right)' = \left(x\right)'$$

$$\left(\ln(x)\right)' \cdot e^{\ln(x)} = 1$$

$$\left(\ln(x)\right)' \cdot x = 1$$

$$\left(\ln(x)\right)' = \frac{1}{x}$$

Die In-Funktion ist an jeder Stelle differenzierbar und es gilt:

$$f(x) = \ln(x)$$
 \Rightarrow $f'(x) = \frac{1}{x}$

Bemerkung:

•
$$f(x) = \log_b(x)$$
 \Rightarrow $f'(x) = \frac{1}{\ln(b) \cdot x}$

•
$$f(x) = \ln(g(x))$$
 \Rightarrow $f'(x) = \frac{g'(x)}{g(x)}$

10. Bestimmen Sie ID_{max} und bilden Sie die erste Ableitung.

a)
$$f(x) = \ln(2x)$$

$$k) \quad f(x) = x^n \cdot \ln(x)$$

b)
$$f(x) = ln(x^2)$$

1)
$$f(x) = \frac{1}{\ln(x)}$$

c)
$$f(x) = (\ln(x))^2$$

$$\ln(x)$$

d)
$$f(x) = ln(2-x^2)$$

m)
$$f(x) = \frac{x}{\ln(x)}$$

e)
$$f(x) = \ln(x^2 - 2x)$$

n)
$$f(x) = ln(9-x^2)$$

f)
$$f(x) = ln(\frac{1}{x})$$

o)
$$f(x) = x \cdot \ln(x) - x$$

g)
$$f(x) = \ln(1+x)$$

p)
$$f(x) = \ln(\ln(x))$$

h)
$$f(x) = \ln(a-x)$$
; $a > 0$

q)
$$f(x) = x \cdot (\ln(x))^2 - 2x \cdot \ln(x) + 2x$$

i)
$$f(x) = x \cdot ln(x)$$

Aufgaben

- 1.0 Gegeben ist die Funktion $f: x \mapsto x \cdot \ln(x)$ mit $\mathbb{ID}_f =]0; \infty[$.
- 1.1 Ermitteln Sie die Nullstelle der Funktion f.
- 1.2 Untersuchen Sie das Verhalten der Funktion f an den Rändern der Definitionsmenge.
- 1.3 Ermitteln Sie Art und Lage des relativen Extremum des Graphen der Funktion f.
- 1.4 Zeigen Sie, dass der Graph der Funktion f keinen Wendepunkt besitzt.

- 1.5 Zeichnen Sie für $0 \le x \le 3$ den Graphen der Funktion in ein kartesisches Koordinatensystem ein. $(1LE \triangleq 2 \text{ cm})$
- 1.6 Zeigen Sie, dass die Funktion $F(x) = \frac{1}{2}x^2 \ln(x) \frac{1}{4}x^2$ eine Stammfunktion von f ist.
- 1.7 Berechnen Sie $\int_{1}^{e^{-1}} f(x) dx$ und kennzeichnen Sie die entsprechende Fläche in ihrem Diagramm von 1.5.
- 2.0 Gegeben ist die Funktion $f: x \mapsto x^2 \cdot \ln(x)$ mit $\mathbb{ID}_f = [0, \infty]$.
- 2.1 Ermitteln Sie die Nullstelle der Funktion f.
- 2.2 Untersuchen Sie das Verhalten der Funktion f an den Rändern der Definitionsmenge.
- 2.3 Ermitteln Sie Art und Lage des relativen Extremum des Graphen der Funktion f.
- 2.4 Ermitteln Sie $\lim_{x \to 0} f'(x)$ und interpretieren Sie Ihr Ergebnis graphisch.
- 2.5 Ermitteln Sie die Koordinaten des Wendepunktes des Graphen der Funktion f.
- 2.6 Zeichnen Sie für $0 \le x \le 2$ den Graphen der Funktion in ein kartesisches Koordinatensystem ein. $(1LE \triangleq 2 \text{ cm})$
- 2.7 Zeigen Sie, dass die Funktion $F(x) = \frac{1}{3}x^3 \ln(x) \frac{1}{9}x^3$ eine Stammfunktion von f ist.
- 2.8 Berechnen Sie $\int_{1}^{e^{-1}} f(x) dx$ und kennzeichnen Sie die entsprechende Fläche in ihrem Diagramm von 2.6
- 3.0 Gegeben ist die Funktion $f: x \mapsto (\ln(x))^2$ mit $\mathbb{ID}_f = [0, \infty)$.
- 3.1 Ermitteln Sie die Nullstelle der Funktion f.
- 3.2 Untersuchen Sie das Verhalten der Funktion f an den Rändern der Definitionsmenge.
- 3.3 Ermitteln Sie Art und Lage des relativen Extremum des Graphen der Funktion f.
- 3.4 Ermitteln Sie die Koordinaten des Wendepunktes des Graphen der Funktion f.
- 3.5 Zeichnen Sie für $0 \le x \le 5$ den Graphen der Funktion in ein kartesisches Koordinatensystem ein.
- 4.0 Gegeben ist die Funktion $f: x \mapsto \ln(9-x^2)$ mit $\mathbb{D}_f \subseteq \mathbb{R}$.
- 4.1 Ermitteln Sie die Definitionsmenge und untersuchen Sie den Graphen der Funktion f auf Symmetrie.
- 4.2 Untersuchen Sie das Grenzwertverhalten des Graphen der Funktion f an den Rändern seiner Definitionsmenge.
- 4.3 Bestimmen Sie die Nullstellen der Funktion f.
- 4.4 Ermitteln Sie die Koordinaten des relativen Extremum des Graphen der Funktion f.
- 4.5 Bestimmen Sie das Krümmungsverhalten des Graphen der Funktion f. Was lässt sich daraus folgern?
- 4.6 Zeichnen Sie den Graphen der Funktion f und seine Asymptoten in ein Koordinatensystem ein.
- 5.0 Gegeben ist die Funktion $f: x \mapsto \ln(x^2 + x)$ mit $\mathbb{ID}_f \subseteq \mathbb{R}$.
- 5.1 Ermitteln Sie die Definitionsmenge.

- 5.2 Untersuchen Sie das Grenzwertverhalten des Graphen der Funktion f an den Rändern seiner Definitionsmenge.
- 5.3 Bestimmen Sie die Nullstellen der Funktion f.
- 5.4 Zeigen Sie, dass der Graph der Funktion f keine Extremum besitzt.
- 5.5 Bestimmen Sie das Krümmungsverhalten des Graphen der Funktion f. Was lässt sich daraus folgern?
- 5.6 Zeichnen Sie den Graphen der Funktion f und seine Asymptoten in ein Koordinatensystem ein.

2004 A II

2010 A I

2012 A I

2008 A I